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Abstract

The rapid advancement of image generation models like Stable
Diffusion raises concerns about potential misuse, making robust
watermarking techniques essential for the authentication and attri-
bution of synthetic content, particularly in combating deepfakes.
However, simultaneously ensuring high-quality image generation
and accurate watermark extraction remains challenging. Through
an analysis of existing methods, we identify a critical limitation:
their loss functions often adopt a single reference (either the input
image or the clean-generated image) for optimizing image fidelity,
leading to suboptimal performance. In this paper, we conduct an
in-depth study of the image-quality loss term in diffusion-based
watermarking. By analyzing the distinct impacts of using the in-
put image versus the clean-generated image as references during
optimization, we reveal that jointly considering both references
significantly improves robustness and visual quality. Extensive ex-
periments demonstrate that our dual-reference approach achieves
superior performance in both watermark extraction accuracy and
generation fidelity compared to single-reference baselines. We ad-
vocate for this paradigm to advance reliable watermarking in gen-
erative models.
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1 Introduction

Nowadays, AI-Generated Content (AIGC) has emerged as a highly
popular and rapidly evolving technology and research field. With
the advancement of generative techniques, especially Diffusion
Models [6, 10, 11], their capabilities, such as producing photoreal-
istic images and streamlining content creation, are progressively
reshaping people’s lifestyles. However, alongside these advance-
ments, significant challenges arise from the potential misuse of
generated images, which poses serious societal risks that demand
continuous attention. In this context, proactive measures, particu-
larly watermarking techniques tailored to generative models, have
become a crucial solution for protecting the model intellectual
property and ensuring the traceability of both models and their
generated content (attribution).

Current watermarking-based deepfake attribution methods for
Latent Diffusion Models (LDMs) can be broadly categorized into
two approaches: post-generation watermarking methods [1, 12, 17],
and joint generation-embedding methods [2-4, 9, 13, 14, 16]. Post-
generation watermarking methods can embed and extract water-
marks directly from images generated by LDMs (see Fig. 1a). While
simple and practical, these methods require additional process-
ing of the output images and remain vulnerable to information
tampering and evasion attacks. Joint generation-embedding meth-
ods, instead, integrate watermarking during the image generation
process, significantly reducing visible artifacts (see Fig. 1b). These
approaches typically utilize the generated output images as feed-
back to appropriately fine-tune part or all of the generative model’s
weights, which ensures both successful watermark extraction and
minimal impact on image quality. Currently, the joint generation-
embedding approach has gained increasing attention in the field, as
it inherently combines image generation and watermarking into a
unified framework. However, existing joint generation-embedding
approaches often employ limited-scope image quality supervision
strategies by relying on single-reference loss functions, i.e., only one
image is used as a reference during loss computation. These meth-
ods typically adopt either (1) the input-image as a reference (e.g.,
WOUAF [9]), where the loss function enforces content/distribution
alignment between input and generated images during training, or
(2) the clean-generated-image (i.e., the non-watermarked generated
image) as a reference (e.g., Stable Signature [4] and AquaLoRA [3]),
which directly minimizes the watermark-related distortion intro-
duced to the generated images. While the former approach domi-
nates most generative watermarking works for maintaining content
consistency, the latter becomes crucial when watermark encoding
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Figure 1: The two main generative watermarking pipelines
for generated image attribution.

affects critical components (noise vectors, U-Net, or text-encoder)
that may otherwise cause content deviation between input and
output.

In this work, we mainly focus on a three-party scenario involv-

ing:

(1) The model owner, who develops a high-quality generative
model and uploads it to a third-party platform.

(2) The third-party platform, which hosts the model, embeds
watermarks into generated images, and decodes them for
traceability, before distributing the model to end users.

(3) The end user, who accesses the model for specific applica-
tions.

To address the limitations of existing loss designs in such scenar-
ios, we conduct an analysis of image-quality supervision signals
and their impact on model performance. Our key contributions
include:

o We identify the limitations of single-reference loss functions
in existing methods, leading to suboptimal performance.

e We propose a dual-reference loss function that jointly consid-
ers both the input image and the clean-generated image as
references during optimization.

e We demonstrate the effectiveness of our dual-reference ap-
proach through extensive experiments, achieving superior
performance in both watermark extraction accuracy and
generation fidelity compared to single-reference baselines.

The remainder of this paper is organized as follows. In Section 2,
we briefly review the related works. Section 3 presents our pro-
posed approach in detail. Comprehensive experimental results are
reported and analyzed in Section 4. Finally, the paper is concluded
in Section 5, where future research directions are also outlined.

2 Related Work

The advancement of LDMs has significantly enhanced the quality
and efficiency of content creation and editing. Text-to-image (T2I)
generation models, in particular, have demonstrated remarkable
progress in both output fidelity and content diversity, enabling
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broader real-world applications. However, critical challenges re-
main in preventing model misuse, ensuring copyright protection,
and attributing generated content to combat disinformation. Wa-
termarking techniques for LDMs have thus emerged as a pivotal
solution, attracting growing research attention.

Existing LDM-based watermarking methods mainly fall into two
categories: post-embedding watermarking, and joint generation-
embedding methods, as shown in Fig. 1.

The former solution represents traditional image-oriented wa-
termarking, which directly embeds and extracts watermarks from
generated outputs, such as classical frequency-domain methods
DCT/DWT-based techniques [1], and deep learning methods like
HiDDeN [17] and StegaStamp [12]. Because they directly operate
on images, they are model-agnostic watermarking methods. While
simple to implement, such methods require additional processing
and remain vulnerable to post-processing attacks.

Recent research has focused on integrating watermark embed-
ding into the image generation process, injecting watermarks into
model parameters, while fine-tuning the generative model. Similar
to the two-stage watermarking pipeline proposed by Yu et al. [14],
Ditria and Drummond [2], and Zhao et al. [16], the watermark in-
formation is indirectly embedded into generated images by training
LDMs with watermarked training datasets. The drawback of this
approach is that it requires modifying training data and retrain-
ing the generative model for each new user deployment. Fernan-
dez et al. [4] proposed a new watermark embedding method for
LDMs called Stable Signature. This method uses a pretrained HiD-
DeN as the watermark extractor and employs the fixed watermark
extractor to guide the fine-tuning of an LDM’s decoder to generate
images containing the corresponding watermark. Wen et al. [13]
proposed Tree-ring watermarks, embedding watermarks into the
initial noise vector of diffusion models to align with specific pat-
terns. Feng et al. [3] proposed AquaLoRA, which utilizes LoRA
modules [7] to embed watermarks in the UNet of an LDM. However,
these methods still require retraining or fine-tuning the generative
model when distributing it to new users, which is highly inefficient
in practical applications. To address this issue, Kim et al. [9] intro-
duced a weight modulation method [8], called WOUAF, to integrate
watermark information into model parameters of Stable Diffusion
without retraining.

While existing methods can successfully embed watermarks
into LDMs, their loss functions typically employ a single reference
image (either the input image or the clean generated image) to
optimize image fidelity, often resulting in suboptimal generation
quality. As summarized in Table 1, current LDM-based watermark-
ing approaches predominantly focus on one reference image type.
Building upon WOUAF [9], our work introduces a dual-reference
supervision to simultaneously account for both input and clean
generated images during optimization, thereby achieving a better
balance between watermark extraction accuracy and generation
quality.

3 Proposed Method

This section presents our dual-reference quality preservation frame-
work, with the complete architecture illustrated in Fig. 2. We first
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Table 1: Overview of reference-type configurations in LDM-
based watermarking methods. The watermark embedding
position is also reported.

Method Embedding position Input reference Generated reference
Stable Signature [4] VAE-Decoder X v
AquaLoRA [3] UNet X v
WOUAF [9] VAE-Decoder v X
Ours VAE-Decoder v v

Em

Watermark m

De. :l Denoising U-Ne

Figure 2: Illustration of our proposed method.

formalize the problem definition, followed by detailed technical
descriptions of each component of our proposed framework.

3.1 Problem Definition

To address the generative image watermarking task, the solution
usually consists of two key components: (1) the watermarking
model for accurate watermark extraction, and (2) the generation
model (specifically based on Stable Diffusion in this work) that
maintains image quality during watermark embedding. Accord-
ingly, the overall training objective can be formulated as:

L=Ln+ L 1)

where L, represents the watermark extraction loss, and .£L; de-
notes the image quality preservation loss. In our proposed method,
L; consists of two components: Lgr and Lig (see Section 3.3 for
details).

Given the watermark decoder D,,, which extracts the predicted
watermark 1 from watermarked generated images x, the objective
function aims to minimize the loss between the extracted watermark
i and the ground truth watermark m. This is typically implemented
using the Binary Cross-Entropy (BCE) loss with sigmoid activation,
formulated as:

dm
Ly == )" [miloga(y) + (1 - my) log(1 - a(m))],  (2)
i=1
where d;, is the watermark length, and o(-) refers to the sigmoid
function. The image quality preservation loss £; will be detailed in
Section 3.3, where we introduce our dual-reference quality preser-
vation loss.
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3.2 Framework Overview

Figure 2 illustrates the overall architecture of our proposed frame-
work, including the Stable Diffusion model, the watermark encoder
and decoder. The Stable Diffusion architecture contains several key
components: a variational autoencoder (VAE) for latent space rep-
resentation, a U-Net based denoising network, a CLIP text encoder
for conditional generation, and a noise scheduler that controls the
diffusion process. During the training stage, the VAE encoder E; en-
codes the input image x into a latent representation zg, which then
undergoes gradual Gaussian noise addition over multiple steps
(forward process). A text-conditioned U-Net iteratively predicts
and subtracts the noise at each step (reverse process), ultimately
reconstructing a denoised latent representation. The final denoised
latent representation is decoded back to the pixel space by the VAE
decoder D;, generating the output image.

Inspired by recent advances in style-based generation [8] and
model watermarking [9], we introduce a weight modulation strat-
egy to integrate watermark into the VAE decoder D;. Specifically,
we apply learnable affine layers to modulate both convolutional and
attention layers in D;, enabling effective watermark embeddings,
while maintaining the model’s generative capabilities. For a given
weight tensor W! € RP*/*K at layer [ (where i, j, k represent input,
output, and kernel dimensions respectively), the weight modulation
operation is formulated as:

7l 1
W!., =u;-W;.
ij.k LTk
, 3)

= Aj(Em(m)) - Vvi,j,k’

where Aj(-) represents the affine transformation layer for layer /,
Em(m) € R9 denotes the d-dimensional watermark embedding for
message m, and u; € R? is the channel-wise modulation vector.

In the context of deepfake generation and attribution, ensuring
the traceability and accountability of synthetic content is critical,
especially as generative models become increasingly accessible and
powerful. Deepfake attribution techniques aim to link generated
media back to their source models, which is essential for detecting
misuse, verifying authenticity, and enforcing the provenance of the
content.

During the model distribution phase, i.e., the phase in which
pretrained generative models are distributed to end users, our
framework enables direct watermark embedding into the gener-
ative model’s parameter space without additional fine-tuning or
retraining of the watermarking components. This design makes
our approach particularly suitable for practical deployment, such
as tagging models distributed to different users or institutions for
downstream deepfake generation tasks.

3.3 Training Objectives

As discussed in Section 3.1, our framework must simultaneously
optimize two competing objectives: watermark extraction accu-
racy and image quality preservation. To address this, we propose
a dual-reference quality preservation loss that leverages both the
input image and the clean-generated image as references, each
contributing distinct advantages:
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(1) Inputimage reference: Ensures watermarked outputs main-
tain distributional consistency with natural images. For con-
ditional generation models like Stable Diffusion, where gen-
erated content may significantly diverge from input images,

we employ the Learned Perceptual Image Patch Similarity

(LPIPS) [15] metric rather than pixel-wise measures. This

perceptual loss better preserves natural image statistics and

human visual fidelity.

Clean-generated reference: Maintains functional equiva-
lence between watermarked and original generation model

outputs. This term minimizes distortions introduced by wa-
termark embedding, preserving the generative model’s core

capabilities. As illustrated in Fig. 2, during the training phase,

our framework incorporates two parallel branches: (a) The

trainable watermarked VAE decoder D; (with watermark

embedding); (b) A reference branch containing a fixed copy

Dj of the original generative model’s VAE decoder. The refer-
ence branch remains completely frozen throughout training,
serving exclusively to generate clean (non-watermarked)

reference images Xy. For quality evaluation against this refer-
ence, we employ the LPIPS metric to ensure the watermarked

outputs maintain perceptual fidelity with the model’s origi-
nal clean generations.

@

The frozen D] branch ensures stable training by providing consis-
tent clean references, while LPIPS captures human-aligned quality
metrics beyond pixel-space losses. Both reference paths use LPIPS
for quality assessment, yielding the composite loss:

Li = Lr(x, %) + Lgr (X0, X), 4

where Lig and Lggr are the LPIPS losses for input and clean-
generated references, respectively.

In the subsequent experiments (Section 4), we systematically
evaluate the performance of our framework under two distinct
configurations of the image quality loss weight (4;) in Eq.(5): A; =
1.0 and A; = 0.5. This formulation represents the comprehensive
loss function that combines both watermark extraction and image
quality objectives:

L=Lm+Ai L. (5)

The configuration with A; = 1.0 directly integrates the reference
image through linear combination in the loss function, placing
maximal emphasis on visual fidelity preservation. In contrast, the
configuration with A; = 0.5 establishes an optimized equilibrium
between image quality preservation and watermark extraction. This
balanced approach carefully modulates the relative contributions
of these competing objectives during the optimization process.

To provide a clearer and more intuitive understanding, Fig. 3
presents two representative examples. The columns, from left to
right, show the prompts from COCO02014, the corresponding input
reference images, the images generated by Stable Diffusion, and
the watermarked generated results. Visually, it is evident that the
content of the generated images with and without watermarks
remains largely consistent. A straightforward strategy to reduce
watermark-induced distortion is to minimize the perceptual dis-
tance between the original and watermarked images. Meanwhile,
the input reference image serves as a constraint to ensure that the
watermarked outputs remain within the natural image distribution.
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Figure 3: Examples of reference-guided generation and wa-
termark embedding. From left to right: the input text prompt
and reference image (in column 1 and 2, respectively), the cor-
responding generated image (GenRef), and the watermarked
generated image (WMGen).

4 Experiments

4.1 Experimental Setup

Datasets: We employ the MS-COCO2014 dataset with Karpathy
splits1 for training, and use the test set, composed of 5,000 samples,
for evaluation. To comprehensively evaluate our watermarking
method across diverse scenarios, we conducted experiments at
multiple image resolutions (256 X 256 and 512 X 512) with varying
watermark lengths:

e For 256 X 256 images, we evaluated watermark lengths of 16,
32, and 48 bits to assess performance.

e For 512 X 512 images, we adopted larger payloads (32 and 64
bits) to leverage their increased spatial dimensions and finer
details.

During evaluation, unless otherwise specified, we embed ran-
domly generated watermarks m ~ U(0,1)% (dy, represents the
watermark length) for each test sample to comprehensively assess
model performance under real-world conditions. This approach rig-
orously tests three critical aspects: (1) encoding reliability through
consistent extraction accuracy across diverse watermark patterns,
(2) generation stability by maintaining image quality independent
of embedded watermarks, and (3) generalization capability against
watermark-distribution shifts.

Implementation details: As mentioned at the end of Section 2,
our work builds upon WOUAF [9] as the baseline watermarking
framework. Specifically, we employ Stable Diffusion v2-base? as
the backbone generative model. During training, the VAE decoder,
watermark encoder and decoder are jointly trained for 25 epochs
with a batch size of 16. For optimization, we used AdamW with an
initial learning rate of 1 x 10~ and cosine annealing scheduling.
All watermarks are randomly generated binary sequences for both
training and evaluation. During T2I generation, we used a classifier-
free guidance scale of 7.5 and the Euler scheduler with 20 sampling
steps by default to ensure consistent generation quality. For fair
comparison, all watermarking solutions are trained and evaluated

!https://huggingface.co/datasets/HuggingFaceM4/COCO
Zhttps://huggingface.co/stabilityai/stable-diffusion-2-base
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under identical configurations (dataset, hardware and evaluation
protocols).

Evaluation metrics: To evaluate the proposed watermarking
framework, we employ a comprehensive set of metrics assessing
both watermark extraction accuracy and image generation quality.
For watermark extraction performance, we use the Bit Accuracy
(BitAcc), calculated as the percentage of correctly decoded water-
mark bits against the ground truth embedded sequence. In terms of
image quality assessment, we measure the image similarity between
watermarked and unmarked generated images using established
metrics including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), Learned Perceptual Image Patch Similarity
(LPIPS) [15] and Fréchet Inception Distance (FID) [5] to quantify the
visual impact of watermark embedding. This multi-faceted evalua-
tion protocol ensures rigorous assessment of both the watermark’s
robustness and its impact on the generative model’s functionality.

4.2 Performance of the Dual-Reference Strategy

In these experiments, we demonstrate the performance of the in-
troduced watermarking method under different training objectives,
including: using only the input image as reference (IR, equivalent
to WOUAF [9]), using only the clean-generated image as reference
(GR), and our proposed dual reference methods with A; = 1.0 (DR-
1.0) and A; = 0.5 (DR-0.5). The experimental results are shown in
Table 2, which compares the performances under different training
objectives across various scenarios, including image resolutions
and watermark lengths.

For experiments at 256 X 256 resolution, DR-1.0 achieved the
best image quality performance across all scenarios, particularly
with 16-bit watermarks. This is because the training process as-
signed a higher weight to the image quality objective. However, this
emphasis also affected DR-1.0’s watermark extraction capability
and learning difficulty, resulting in inferior extraction performance
compared to GR and DR-0.5. In contrast, DR-0.5 achieved a better
balance between watermark extraction and image quality, espe-
cially with 32-bit watermarks where it reached 0.984 BitAcc, while
maintaining high image quality metrics compared to other single-
reference solutions.

For experiments at 512 X 512 resolution, DR-1.0 expectedly
achieved the best image quality results. The results also demonstrate
that longer watermarks (64-bit) present greater embedding chal-
lenges, leading to lower BitAcc. DR-0.5 maintained a good balance,
achieving 0.994 BitAcc with 32-bit watermarks while maintaining
competitive image quality. Although IR achieved the highest BitAcc
with 64-bit watermarks, it suffered greater losses in image quality,
underperforming both DR-1.0 and DR-0.5. This indicates that loss
functions using only input reference have greater impact on image
quality during optimization.

It should be noted that since the base Stable Diffusion v2 model
was pretrained at 512512 resolution, its performance at this resolu-
tion generally surpasses that at 256 X 256 resolution. Particularly for
image quality preservation, the results of 512 x 512 achieved near-
ideal PSNR values around 30 dB, making the watermark-induced
distortions perceptually negligible, as shown in Fig. 4(a). Further-
more, the higher resolution provides a larger spatial capacity for
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Table 2: Comparison of watermarking performance for vari-
ous length d;,; of the watermark, and different WOUAF [9]
configurations. IR: input-reference (WOUAF baseline); GR:
generated-reference only; DR-1.0 / DR-0.5: dual-reference
method with A; =1.0/0.5.

Resolution of 256 X 256

dm Method BitAce] FID| LPIPS| PSNRT SSIMT
IR [9] 0.934 6.693 0.099 26.831 0.829
16 GR 0.989 5.758 0.085 27.375 0.854
DR-1.0 0.884 4.987 0.075 28.107 0.861
DR-0.5 0.985 6.306 0.093 27.029 0.843
1R [9] 0.977 7.596 0.114 25.535 0.795
32 GR 0.975 7.459 0.102 25.913 0.820
DR-1.0 0.795 5.647 0.084 27.184 0.832
DR-0.5 0.984 7.631 0.106 25.972 0.817
IR [9] 0.801 7.271 0.108 25.771 0.797
48 GR 0.871 6.030 0.086 26.780 0.833
DR-1.0 0.840 4.738 0.072 27.792 0.847
DR-0.5 0.877 6.906 0.098 26.404 0.823
Resolution of 512 x 512
dm Method BitAcel FID| LPIPS| PSNRT SSIMT
1R [9] 0.968 2.478 0.094 28.766 0.809
32 GR 0.991 1.938 0.077 29.737 0.853
DR-1.0 0.992 1.606 0.068 30.172 0.856
DR-0.5 0.994 2.009 0.081 29.539 0.838
IR [9] 0.889 2.512 0.091 28.520 0.793
64 GR 0.875 1.924 0.071 30.026 0.852
DR-1.0 0.830 1.429 0.060 30.683 0.864
DR-0.5 0.858 1.809 0.073 29.732 0.841

embedding watermark information, which further contributes to
the generation of high-quality, visually consistent images.

4.3 Robustness Analysis

To enhance robustness against real-world distortions, we integrated
a distortion layer (e.g., JPEG compression, Gaussian noise) before
the watermark decoder during training.

Building upon the WOUAF [9] framework, we evaluated the
robustness of our proposed strategy in terms of BitAcc (the higher
the better) against various post-processing attacks: center crop
(ratio=0.1), rotation (25°), resizing (scale factor=0.5), JPEG com-
pression (quality factor, QF=50), brightness adjustment (factor=1.5),
contrast adjustment (factor=1.5), sharpening (factor=1.5), text over-
laying, and a composite attack combining cropping (0.5), brightness
adjustment (1.5), and JPEG compression (QF=80). As a baseline
reference, we also compared the extraction performance under the
“None” setting, i.e., in the absence of any attacks.

As demonstrated in Table 3, the DR-0.5 strategy maintains su-
perior robustness across most attack scenarios. While exhibiting
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PSNR: 31.20

DR-0.5

PSNR: 31.75

PSNR: 30.54

(a) The procedure based on WOUAF [9].
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PSNR: 30.49 DR-0.5 PSNR: 30.55

PSNR: 30.65

(b) The procedure based on SSW [4].

Figure 4: Visualization of qualitative results. The 1st and 3rd columns of each subfigure show outputs from the baseline (IR
in (a) and GR in (b)) and DR-0.5, respectively. Each watermarked image is followed by its corresponding pixel-wise difference
map (x5 magnified) with respect to the clean-generated image. PSNR values are reported above each difference map.

Table 3: Bit-accuracy (T) comparison under image post-
processing attacks on the WOUAF model with image res-
olution of 256 x 256 and d,,, = 16.

Attack Type IR[9] GR DR-1.0 DR-0.5
None 0.995 0.992 0.847 0.994
Crop 0.1 0.647 0.646  0.634 0.663
Rot. 25 0976 0972  0.823 0.979
JPEG 50 0.960 0.909 0.763 0.920
Bright. 1.5 0.712  0.636  0.651 0.863
Contrast. 1.5 0.697 0.926  0.799 0.933
Sharp. 1.5 0.995 0.991 0.846 0.994
Resize 0.5 0.928 0913 0.774 0.911
Overlay 0.499 0.602  0.589 0.694
Comb. 0.603  0.577  0.598 0.747

slightly lower performance than the IR baseline under JPEG com-
pression, sharpening, and resizing operations, it still delivers com-
petitive resilience. Notably, DR-0.5 shows particular strength against
the composite attacks, validating its balanced design principle.

4.4 Generalization of the Dual-Reference
Strategy

To validate the generalization of our dual-reference strategy, we
conducted experiments based on the Stable Signature advanced
watermarking method [4] (hereinafter referred to as SSW), under
the configuration of 256 X 256 resolution and 48-bit watermark
length. Unlike the previous method based on WOUAF [9], the wa-
termarking technique SSW solely utilizes GR as the supervision
signal for image quality and fine-tunes the VAE decoder with a
fixed watermark.

In Table 4, we systematically evaluate the SSW watermarking
framework under distinct reference strategies for image quality op-
timization: the input-image reference (IR), the original SSW baseline
relying solely on clean-generated references (GR), and our proposed
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Table 4: Performance comparison of Stable Signature [4] on
image resolution 256 X 256 and 48-bit watermark length. IR:
input-reference; GR: generated-reference (SSW baseline); DR-
1.0 / DR-0.5: dual-reference methods with A; = 1.0/ 0.5.

Method BitAcc] FID| LPIPS| PSNRT SSIM]
IR 0.982 8511  0.118 25505  0.798
GR [4] 0920  4.058 0074 28732  0.869
DR-1.0 0909  3.665 0.070 29.185 0.877
DR-0.5 0942 4104 0074 28599  0.869

dual-reference strategies with A; = 1.0 (DR-1.0) and A; = 0.5 (DR-
0.5). As shown in Table 4, although the IR strategy achieves the
best BitAcc, its image quality is suboptimal, especially under fixed
watermark conditions. The experimental results clearly demon-
strate that the DR-1.0 strategy yields superior image quality due
to its stronger optimization weighting on the image preservation
objective L; with respect to the watermark extraction loss L,
but this meanwhile comes at the cost of reduced watermark ex-
traction capability. Most significantly, the DR-0.5 strategy achieves
the optimal balance between watermark extraction accuracy and
image quality preservation. These findings not only confirm the
advantages of our proposed method but also strongly support the
necessity of incorporating dual-reference supervision in generative
watermarking systems.

The last four columns of Fig. 4(b) present the image generation
results of SSW with the image resolution of 512 x 512. Under the
DR-0.5 strategy, SSW achieves visually appealing and competitive
image quality. Unlike WOUAF, SSW relies solely on the generated
reference image for supervision. Compared to the SSW baseline,
employing the DR-0.5 strategy not only leads to competitive and
even improved image quality, but also provides a better overall
balance between watermark extraction accuracy and perceptual
fidelity.
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5 Concluding Remarks

In this paper, we have proposed a dual-reference loss function for
diffusion-based generative watermarking, with specific implementa-
tion and validation in the Stable Diffusion framework. Our method
demonstrated consistent performance improvements when applied
to various state-of-the-art watermarking techniques, achieving su-
perior balance between watermark extraction accuracy and image
quality preservation compared to single-reference approaches (us-
ing either input images or clean-generated images as exclusive
references). This advancement holds significant promise for deep-
fake attribution, providing a robust mechanism to embed verifiable
information within synthetic media.

For future work, we will investigate more intelligent weighting
strategies that automatically adjust the trade-off between water-
mark extraction and image quality objectives during optimization.
This direction promises to deliver enhanced performance balance
and accelerated convergence, while maintaining the framework’s
robustness, thereby strengthening its application in the crucial area
of deepfake detection and provenance.
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